12x^2+16x^2=10^2

Simple and best practice solution for 12x^2+16x^2=10^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x^2+16x^2=10^2 equation:



12x^2+16x^2=10^2
We move all terms to the left:
12x^2+16x^2-(10^2)=0
We add all the numbers together, and all the variables
28x^2-100=0
a = 28; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·28·(-100)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{7}}{2*28}=\frac{0-40\sqrt{7}}{56} =-\frac{40\sqrt{7}}{56} =-\frac{5\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{7}}{2*28}=\frac{0+40\sqrt{7}}{56} =\frac{40\sqrt{7}}{56} =\frac{5\sqrt{7}}{7} $

See similar equations:

| -3+5x=4x+10 | | 180=6*2y | | 64^2x+4=165x | | 2x=16.4* | | n2^n=10000 | | 2x=16.4 | | 3r/7=13/15 | | 3/7-r=13/15 | | 7w-36=-3(2-4w) | | 0.7x+5=20-x | | 12x-x=51 | | 20n-3=6n | | -6(-3x-4)=120 | | 0.25x=3(-0.25x+3) | | −7(p−3)+11=−3(p+4)+p | | 4x+2=6(0.3x-0.7) | | -4g+-2=14 | | 20=8−2m | | 12x=12(1x-1)+11 | | 4(x−3)=−2 | | -2x-16=-6 | | 3(x-4)-(x+5)=2x-11 | | 4t−t=9 | | -2x+69=81 | | (4x-7)+(7x-61)=90 | | -6x-35=1+3x | | 7x+15=−7x−20 | | 7/5=105/x | | 79-8x=119 | | (5x+7)+(8x-71)=90 | | 30=1/2n+28 | | 3x6-12=6 |

Equations solver categories